Mining of Web-Page Visiting Patterns with Continuous-Time Markov Models

نویسندگان

  • Qiming Huang
  • Qiang Yang
  • Joshua Zhexue Huang
  • Michael K. Ng
چکیده

This paper presents a new prediction model for predicting when an online customer leaves a current page and which next Web page the customer will visit. The model can forecast the total number of visits of a given Web page by all incoming users at the same time. The prediction technique can be used as a component for many Web based applications . The prediction model regards a Web browsing session as a continuous-time Markov process where the transition probability matrix can be computed from Web log data using the Kolmogorov’s backward equations. The model is tested against real Web-log data where the scalability and accuracy of our method are analyzed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of web page recommendation algorithm based on weighted sequential patterns and markov model

Web usage mining techniques helps the users to predict the required Web page recommendations. In recent times, there has been a considerable significance given to sequential mining approaches to construct web page recommendation systems. This paper focuses on developing a web page recommendation approach for accessing related web pages more efficiently and effectively using weighted sequential ...

متن کامل

DECT: Distributed Evolving Context Tree for Mining Web Behavior Evolution Industrial Paper

Internet user behavior models characterize user browsing dynamics or the transitions among web pages. The models help Internet companies improve their services by accurately targeting customers and providing them the information they want. For instance, specific web pages can be customized and prefetched for individuals based on sequences of web pages they have visited. Existing user behavior m...

متن کامل

DECT: Distributed Evolving Context Tree for Mining Web Behavior Evolution

Internet user behavior models characterize user browsing dynamics or the transitions among web pages. The models help Internet companies improve their services by accurately targeting customers and providing them the information they want. For instance, specific web pages can be customized and prefetched for individuals based on sequences of web pages they have visited. Existing user behavior m...

متن کامل

Prediction of User’s Next Web Page Request By Hybrid Technique

The problem of predicting user’s web page request is gaining importance due to the increase in the demand of world wide web; recently Markov models are widely used for this purpose. Markov models found major application in this area different order markov models are used for providing different level of accuracy to the prediction .This paper focuses on different techniques used for predicting u...

متن کامل

Web User Behavior Analysis Using Improved Naïve Bayes Prediction Algorithm

With the continued growth and proliferation of Web services and Web based information systems, the volumes of user data have reached astronomical proportions. Analyzing such data using Web Usage Mining can help to determine the visiting interests or needs of the web user. As web log is incremental in nature, it becomes a crucial issue to predict exactly the ways how users browse websites. It is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004